La Regla de la Cadena
Calentamiento Empezamos con un concurso rápido sobre el uso del "Experimento mental de cálculo (EMC)" descrito en el tutorial anterior:
Experimento mental de cálculo (EMC)
El experimento mental de cálculo es una técnica para determinar si podría tratar una expresión algebraica como una suma, diferencia, producto, cociente, potencia, ...:
Dada una expresión, se considere los pasos que daría usted en calcular su valor. Si la ultima operación es una multiplicación, se toma la expresión como un producto; si la ultima operación es una división, se toma la expresión como un cociente; si la ultima operación es elevar a una potencia, se toma la expresión como una potencia, y así en forma sucesiva.
Uso del experimento mental de cálculo (EMC) para diferenciar una función
Si dice el EMC que la dada expresión está una suma, entonces aplique, como primer paso, la regla para sumas. Esto le dejará con expresiones más pequeño para diferenciar, y ahora puede aplicar el EMC a éstas, y así en forma sucesiva...
Ejemplos
1. (3x2- 4)(2x+1) se puede calcular evaluando primero las expresiones entre paréntesis y multiplicando. Como el ultimo paso es multiplicación, se puede tratar la expresión como un producto.
2. (2x- 1)/x se puede calcular evaluando primero el numerador y el denominador, y por último dividendo el uno por el otro. Como al ultimo paso es división, podemos tratar la expresión como un cociente.
3. x2 + (4x- 1)(x+2) se puede calcular evaluando primero x2, después (4x- 1)(x+2), y por último sumando las dos respuestas. Entonces, podemos tratar la expresión como una suma.
4. (3x2- 1)5 se puede calcular evaluando primero el expresión entre paréntesis, y por último evaluando a la quinta potencia la respuesta. Entonces, podemos tratar la expresión como una potencia.
|
CONCURSO | |
P Hemos hecho el calentamiento. ¿Entonces, qué dice la regla de la cadena?
R Aquí esta un ejemplo: Sabemos que la derivada de x3 es 3x2. ¿Qué, entonces, diría es la derivada de algo más complicado elevado al tercer poder, como por ejemplo (2x + x-1.4)3 ?
P ¿No es sencillamente la respuesta 3(2 + 1.4x0.4)2 ?
R No. Para hallar la respuesta correcta usamos la regla de la cadena.
La regla de la cadena
Si u es una función diferenciable de x, y f es una función diferenciable de u, entonces fes una función diferenciable de x, y:
d
dx
| [f(u)] | = | f'(u) |
du
dx
|
|
Ejemplo
Tomando f(x) = x3, obtenemos
d
dx
| u3 | = | 3u2 |
du
dx
|
En palabras:
La derivada de una cantidad al cubo es igual a 3 veces la cantidad (original) al cuadrado por la derivada de la cantidad.
A veces se refiere a esto como un ejemplo de la regla generalizada de las potencias.
Más ejemplos
1. |
d
dx
| (1+x2)3 | = |
3(1+x2)2 |
d
dx
| (1+x2) | | La derivada de una cantidad al cubo es 3 veces la cantidad (original) al cuadrado por la derivada de la cantidad. |
|
| | | = |
|
| | | = |
|
2. |
d
dx
|
2
(x+x2)3
| = |
d
dx
| 2(x+x2)-3 |
|
| | | = |
2(-3)(x+x2)-4 |
d
dx
| (x+x2) | | La derivada de una cantidad elevada a la -3 es -3 veces la cantidad (original) elevada a la -4 por la derivada de la cantidad. |
|
| | | = |
|
| | | = |
-6(1+2x)
(x+x2)4
|
|
|
P Perfecto, ¿y qué tal funciones aparte de potencias, como ln(x2 + 4x), por ejemplo?
R La siguiente tabla nos muestra como se aplica la regla de la cadena a varias funciones, incluyendo dos cuyas derivadas encontraremos más tarde:
Regla original
|
Regla generalizada (Regla de la cadena)
|
Ejemplo
|
Comentarios
|
d
dx
| f(x) = g(x) |
|
d
dx
| f(u) = g(u) |
du
dx
|
| | Forma general de la regla de la cadena |
d
dx
| xn = nxn-1 |
|
d
dx
| un = nun-1 |
du
dx
|
|
d
dx
| 5(4x + 3)0.5 | = | 2.5(4x + 3)-0.5(4) |
| | = | 10(4x + 3)-0.5 |
| Regla generalizada de las potencias |
|
|
d
dx
| √1 + x2 | = |
1
2√1 + x2
| 2x |
| | = |
x
√1 + x2
|
| Regla de las potencias con n = 1/2 |
d
dx
| ex = ex |
|
d
dx
| eu = eu |
du
dx
|
|
d
dx
| e(3x-1) | = | e(3x-1)(3) |
| | = | 3e(3x-1) |
| Vea el siguiente tutorial. |
d
dx
| sin x = cosx |
|
d
dx
| sin u = cosu |
du
dx
|
|
d
dx
| sin(3x-1) | = | cos(3x-1)(3) |
| | = | 3cos(3x-1) |
| ¡Lléveme al texto de las funciones trigonométricas! |
CONCURSO | |
|
d
dx
| |
3x - 1
x2 - x-1
| | 5 | = ? |
|
5 | |
3x - 1
x2 - x-1
| | 4 | |
3
2x + x-2
| |
|
|
5 | |
3x - 1
x2 - x-1
| | 4 |
|
|
5 | |
3
2x + x-2
| | 4 |
|
|
5 | |
3(x2-x-1)-(3x-1)(2x+x-2)
(x2-x-1)2
| | 4 |
|
|
5 | |
3x - 1
x2 - x-1
| | 4 | |
3(x2-x-1)-(3x-1)(2x+x-2)
(x2-x-1)2
| |
|
|
|
3(x2-x-1)-(3x-1)(2x+x-2)
(x2-x-1)2
| | 5 |
|
|
|
d
dx
| [(x2 - 1)3(3x + 4)-1] | = ? |
| -18x(x2 - 1)2(3x + 4)-2 |
| 3(x2 - 1)2(3x+4)-1 - (x2 - 1)3(3x+4)-2 |
| 6x(x2 - 1)2(3x+4)-1 - 3(x2 - 1)3(3x+4)-2 |
| 6x(3x+4)-1 - (x2 - 1)(3)-2 |
| 3(2x)2(-1)(3) -2 |
|
http://www.zweigmedia.com/MundoReal/tutorials/frames3_2.html
Buen trabajo(:
ResponderBorrarmuy buen blog
ResponderBorrar